J Biomed Mater Res B Appl Biomater
January 2009
Various biomaterial scaffolds have been investigated for cartilage tissue engineering, although little attention has been paid to the effect of scaffold microstructure on tissue growth. Non-woven, fibrous, bioabsorbable scaffolds constructed from a copolymer of glycolide and trimethylene carbonate with varying levels of porosity and pore size were seeded with mesenchymal stroma cells with a chondrogenic lineage. Scaffolds and media were evaluated for both cell and extracellular matrix organization and content after up to 28 days of culture in a spinner flask.
View Article and Find Full Text PDFClin Orthop Relat Res
March 2000
The aim of this study was to prevent wear debris from reaching the interface of the acetabular cup and femoral component by using a partially occlusive expanded polytetrafluoroethylene membrane. This membrane initially acted as a physical seal, which became incorporated by bone and soft tissue, forming a secondary biologic seal, preventing loosening. An animal model was developed to test the hypothesis.
View Article and Find Full Text PDFCartilage implants which could potentially be used to resurface damaged joints were created using rabbit articular chondrocytes and synthetic, biodegradable polymer scaffolds. Cells were serially passaged and then cultured in vitro on fibrous polyglycolic acid (PGA) scaffolds. Cell-PGA constructs were implanted in vivo as allografts to repair 3-mm diameter, full thickness defects in the knee joints of adult rabbits, and cartilage repair was assessed histologically over 6 months.
View Article and Find Full Text PDFPre- and poststudy motion and gait analyses of eight size-matched male greyhounds confirmed uniform loading of their femora. Subminiature strain gages implanted on the intact inferior and anterior aspects of the femoral neck in six greyhounds indicated in vivo strain variations among test animals. Motion and gait analyses confirmed uniform loading of femora following unilateral hemiarthroplasty with cobalt-chromium hip implants.
View Article and Find Full Text PDF