Publications by authors named "J Eian"

For decades pulse oximeters designed for use on the head, hands, or feet have provided invaluable estimates of oxygen saturation to medical personal attending to combat casualties. However, traditional placement sites are not ideal for the relatively new paradigm of continuous battlefield telemonitoring. To assess the feasibility of oximetry on nontraditional body sites, 42 healthy volunteers were enrolled, consented, and underwent an industry standard induced-hypoxia study.

View Article and Find Full Text PDF

Conditional neuronal membrane potential oscillations have been identified as a potential mechanism to help support or generate rhythmogenesis in neural circuits. A genetically identified population of ventromedial interneurons, called Hb9, in the mouse spinal cord has been shown to generate TTX-resistant membrane potential oscillations in the presence of NMDA, serotonin and dopamine, but these oscillatory properties are not well characterized. Hb9 interneurons are rhythmically active during fictive locomotor-like behavior.

View Article and Find Full Text PDF

Despite the diverse methods vertebrates use for locomotion, there is evidence that components of the locomotor central pattern generator (CPG) are conserved across species. When zebrafish begin swimming early in development, they perform short episodes of activity separated by periods of inactivity. Within these episodes, the trunk flexes with side-to-side alternation and the traveling body wave progresses rostrocaudally.

View Article and Find Full Text PDF

We recorded from over 280 single cortical neurons throughout the medial anterior lobe of the cat cerebellum during passive movements of the hindlimbs resembling stepping on a moving treadmill. We used three stepping patterns, unilateral stepping of either the ipsilateral or contralateral leg and bipedal stepping in an alternating gait pattern. We found that over 60% of the neurons, mostly Purkinje cells, responded to stepping of one or both legs, and over 40% to more than one type of stepping pattern.

View Article and Find Full Text PDF

We recorded from over 250 single cortical neurons throughout the medial anterior lobe of the cat cerebellum during passive movements of the ipsilateral hindlimb resembling stepping on a moving treadmill. We applied three different quantitative analysis techniques to determine the extent of neuronal modulation that could be accounted for by the stepping movements. The analyses all indicated that up to half the recorded neurons in all five lobules responded to these passive hindlimb movements.

View Article and Find Full Text PDF