Publications by authors named "J Eduardo Batista"

Metabolomics is a valuable tool to assess glyphosate exposure and its potential impact on human health. However, few studies have used metabolomics to evaluate human exposure to glyphosate or glyphosate-based herbicides (GBHs). In this study, an untargeted and targeted metabolomics approach was applied to human skin fibroblasts exposed to the GBH Roundup (GLYP-R).

View Article and Find Full Text PDF

The development of methods for determining volatile and semi-volatile organic compounds in public spaces has become necessary to identify potential health and environmental risks. This study presents a practical methodology for sampling, extracting, detecting, and identifying these compounds in a vehicular traffic region in Belo Horizonte, Brazil. The methodology uses direct-immersion solid phase microextraction (DI-SPME) and static headspace (SHS) to extract SVOCs/VOCs.

View Article and Find Full Text PDF

As part of our continuous study on the Annonaceae species Porcelia macrocarpa, in the present work, eight chemically related 2-alkyl-3-hydroxy-4-methyl-γ-lactones (1-8) were isolated. Their structures were characterised by NMR, MS, and VCD. Their antitrypanosomal activity was evaluated in vitro against intracellular amastigotes with EC values ranged from 13.

View Article and Find Full Text PDF

Regulatory frameworks for potable reuse often include stringent log reduction value (LRV) targets to ensure public health protection against exposure to viruses and protozoa. To achieve overall LRV targets and reduce associated capital and operational costs, it is important to maximize LRV credits awarded to each unit process in a potable reuse treatment train. This may include processes that are historically uncredited or undercredited, such as secondary biological wastewater treatment incorporating activated sludge and secondary clarification.

View Article and Find Full Text PDF

Pompe disease is a rare, progressive neuromuscular disease caused by deficient lysosomal glycogen degradation, and includes both late-onset (LOPD) and severe infantile-onset (IOPD) phenotypes. Due to very small patient numbers in IOPD and the high phenotypic heterogeneity observed in this population, a quantitative systems pharmacology (QSP)-based "digital twin" approach was developed to perform an in silico comparison of the efficacy of avalglucosidase alfa vs. the standard of care, in a virtual population of IOPD patients.

View Article and Find Full Text PDF