Background And Aims: Drug-induced liver injury (DILI) is one of the most frequent reasons for failure of drugs in clinical trials or market withdrawal. Early assessment of DILI risk remains a major challenge during drug development. Here, we present a mechanism-based weight-of-evidence approach able to identify certain candidate compounds with DILI liabilities due to mitochondrial toxicity.
View Article and Find Full Text PDFFollowing the publication of the joint The International Commissions on Radiation Units and Measurements (ICRU) and on Radiological Protection (ICRP) report on new operational quantities for radiation protection, the European Dosimetry Group (EURADOS) have carried out an initial evaluation. The EURADOS report analyses the impact that the new quantities will have on: radiation protection practice; calibration and reference fields; European and national regulation; international standards and, especially, dosemeter and instrument design. The task group included experienced scientists drawn from across the various EURADOS working groups.
View Article and Find Full Text PDFCommercially-reared bumblebees provide an important pollinator service that helps support food production and security. The deployment of an appropriate non-thermal disinfection technology for the bulk treatment of pollen collected from honeybees for the feeding of commercial bumblebees is important in order to mitigate against complex diseases and unwanted pathogen spillover to native bees. High level disinfection of pollen was achieved using an electron (e)-beam dose of 100 kGy that corresponded to 78 % loss of cellular viability of bee pathogens before feeding to bumblebees as measured by the novel in vitro use of flow cytometry (FCM).
View Article and Find Full Text PDFObjective: To estimate operator organ doses from fluoroscopically guided infrarenal endovascular aneurysm repair (EVAR) procedures, using the detailed exposure information contained in radiation dose structured reports.
Methods: Conversion factors relating kerma area product (P) to primary operator organ doses were calculated using Monte Carlo methods for 91 beam angles and seven x-ray spectra typical of clinical practice. A computer program was written, which selects the appropriate conversion factor for each exposure listed in a structured report and multiplies it by the respective P.