This study aimed to develop and validate a cost-effective, customizable patient-specific phantom for simulating external ventricular drain placement, combining image segmentation, 3-D printing and molding techniques. Two variations of the phantom were created based on patient MRI data, integrating a realistic skin layer with anatomical landmarks, a 3-D printed skull, an agarose polysaccharide gel brain, and a ventricular cavity. To validate the phantom, 15 neurosurgeons, residents, and physician assistants performed 30 EVD placements.
View Article and Find Full Text PDFAugmented Reality (AR) involves superimposing digital content onto the real environment. AR has evolved into a viable tool in neurosurgery, enhancing intraoperative navigation, medical education and surgical training by integrating anatomical data with the real world. Neurosurgical AR relies on several key techniques to be successful, which includes image segmentation, model rendering, AR projection, and image-to-patient registration.
View Article and Find Full Text PDFPurpose: This study evaluates the nnU-Net for segmenting brain, skin, tumors, and ventricles in contrast-enhanced T1 (T1CE) images, benchmarking it against an established mesh growing algorithm (MGA).
Methods: We used 67 retrospectively collected annotated single-center T1CE brain scans for training models for brain, skin, tumor, and ventricle segmentation. An additional 32 scans from two centers were used test performance compared to that of the MGA.
Objective: For currently available augmented reality workflows, 3D models need to be created with manual or semiautomatic segmentation, which is a time-consuming process. The authors created an automatic segmentation algorithm that generates 3D models of skin, brain, ventricles, and contrast-enhancing tumor from a single T1-weighted MR sequence and embedded this model into an automatic workflow for 3D evaluation of anatomical structures with augmented reality in a cloud environment. In this study, the authors validate the accuracy and efficiency of this automatic segmentation algorithm for brain tumors and compared it with a manually segmented ground truth set.
View Article and Find Full Text PDF