Publications by authors named "J E Routly"

The environment contributes to production diseases that in turn badly affect cow performance, fertility and culling. Oestrus intensity is lower in lame cows, and in all cows 26% potential oestrus events are not expressed (to avoid getting pregnant). To understand these trade-offs, we need to know how animals react to their environment and how the environment influences hypothalamus-pituitary-adrenal axis (HPA) interactions with the hypothalamus-pituitary-ovarian axis (HPO).

View Article and Find Full Text PDF

In studying the efficiency of a variety of methods for estrus detection in a large dairy herd, we suspected a definite sequence of estrus signs. Consequently, we observed a subset of animals continuously between 0400 and 2400 h, making a note of the precise timing and frequency of each sexual behavior. Sixteen Holstein-Friesian cows, >20 d postpartum, were equipped with motion activity-sensing neck collars and had milk progesterone profiles monitored simultaneously.

View Article and Find Full Text PDF

We have previously established that the efficiency of identifying oestrus with activity-sensing devices can be compromised by common production diseases; the present study was undertaken to determine how these diseases may affect device readings. A total of 67 Holstein-Friesian cows, >20 days postpartum, were equipped with activity-sensing neck collars and pedometers, and simultaneous milk progesterone profiles were also monitored twice a week. The influences of common production stressors on maximum activity and progesterone values were analysed.

View Article and Find Full Text PDF

In the ewe, steroid hormones act on the hypothalamic arcuate nucleus (ARC) to initiate the GnRH/LH surge. Within the ARC, steroid signal transduction may be mediated by estrogen receptive dopamine-, β-endorphin- or neuropeptide Y (NPY)-expressing cells, as well as those co-localising kisspeptin, neurokinin B (NKB) and dynorphin (termed KNDy). We investigated the time during the follicular phase when these cells become activated (i.

View Article and Find Full Text PDF

The aim of this study was to investigate how acute insulin-induced hypoglycaemia (IIH) alters the activity of cells containing oestradiol receptor α (ERα) or somatostatin (SST) in the arcuate nucleus (ARC) and ventromedial nucleus (VMN), and ERα cells in the medial preoptic area (mPOA) of intact ewes. Follicular phases were synchronized with progesterone vaginal pessaries. Control animals were killed at 0 h or 31 h (n = 5 and 6, respectively) after progesterone withdrawal (PW; time zero).

View Article and Find Full Text PDF