Publications by authors named "J E Paz"

The enzyme acetylcholinesterase (AChE) plays a crucial role in the termination of nerve impulses by hydrolyzing the neurotransmitter acetylcholine (ACh). The inhibition of AChE has emerged as a promising therapeutic approach for the management of neurological disorders such as Lewy body dementia and Alzheimer's disease. The potential of various compounds as AChE inhibitors was investigated.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is a leading cause of mortality and disability worldwide and can lead to secondary sequelae such as increased seizure susceptibility. Emerging work suggests that the thalamus, the relay center of the brain that undergoes secondary damage after cortical TBI, is involved with heightened seizure risks after TBI. TBI also induces the recruitment of peripheral immune cells, including T cells, to the site(s) of injury, but it is unclear how these cells impact neurological sequelae post-TBI.

View Article and Find Full Text PDF

NMDA receptor mediated autoimmune encephalitis (NMDAR-AE) frequently results in persistent sensory-motor deficits, especially in children, yet the underlying mechanisms remain unclear. This study investigated the long- term effects of exposure to a patient-derived GluN1-specific monoclonal antibody (mAb) during a critical developmental period (from postnatal day 3 to day 12) in mice. We observed long-lasting sensory-motor deficits characteristic of NMDAR-AE, along with permanent changes in callosal axons within the primary somatosensory cortex (S1) in adulthood, including increased terminal branch complexity.

View Article and Find Full Text PDF

: The objective of this paper is to introduce a method to measure the force or pressure over the carpal tunnel indirectly, using a new device to drive the pointer of a computer system. The measurements were compared with those obtained using an ergonomic mouse. Simultaneously, measurements of muscular stress on the digitorum extensor muscle were performed to correlate the applied force against muscle activity.

View Article and Find Full Text PDF

Cardiovascular diseases (CVD) pose a significant global health challenge, requiring innovative therapeutic strategies. Vasodilators, which are central to vasodilation and blood pressure reduction, play a crucial role in cardiovascular treatment. This study integrates quantitative structure- (QSAR) modeling and molecular dynamics (MD) simulations to predict the biological activity and interactions of vasodilatory compounds with the aim to repurpose drugs already known and estimateing their potential use as vasodilators.

View Article and Find Full Text PDF