We discuss the outcomes of our 16th horizon scan of issues that are novel or represent a considerable step-change and have the potential to substantially affect conservation of biological diversity in the coming decade. From an initial 96 topics, our international panel of 32 scientists and practitioners prioritised 15 issues. Technological advances are prominent, including metal and non-metal organic frameworks, deriving rare earth elements from macroalgae, synthetic gene drives in plants, and low-emission cement.
View Article and Find Full Text PDFThe collective dynamics of self-organised systems emerge from the decision rules agents use to respond to each other and to external forces. This is evident in groups of animals under attack from predators, where understanding collective escape patterns requires evaluating the risks and rewards associated with particular social rules, prey escape behaviour, and predator attack strategies. Here, we find that the emergence of the 'fountain effect', a common collective pattern observed when animal groups evade predators, is the outcome of rules designed to maximise individual survival chances given predator hunting decisions.
View Article and Find Full Text PDFMany animals avoid detection or recognition using camouflage tailored to the visual features of their environment. The appearance of those features, however, can be affected by fluctuations in local lighting conditions, making them appear different over time. Despite dynamic lighting being common in many terrestrial and aquatic environments, it is unknown whether dynamic lighting influences the camouflage patterns that animals adopt.
View Article and Find Full Text PDFWe present the results of our 15th horizon scan of novel issues that could influence biological conservation in the future. From an initial list of 96 issues, our international panel of scientists and practitioners identified 15 that we consider important for societies worldwide to track and potentially respond to. Issues are novel within conservation or represent a substantial positive or negative step-change with global or regional extents.
View Article and Find Full Text PDFOne of the most spectacular displays of social behavior is the synchronized movements that many animal groups perform to travel, forage and escape from predators. However, elucidating the neural mechanisms underlying the evolution of collective behaviors, as well as their fitness effects, remains challenging. Here, we study collective motion patterns with and without predation threat and predator inspection behavior in guppies experimentally selected for divergence in polarization, an important ecological driver of coordinated movement in fish.
View Article and Find Full Text PDF