Publications by authors named "J E Hardingham"

Background: Epimers of ginsenoside Rg3 (Rg3) have a low bioavailability and are prone to deglycosylation, which produces epimers of ginsenoside Rh2 (S-Rh2 and R-Rh2) and protopanaxadiol (S-PPD and R-PPD). The aim of this study was to compare the efficacy and potency of these molecules as anti-cancer agents.

Methods: Crystal violet staining was used to study the anti-proliferatory action of the molecules on a human epithelial breast cancer cell line, MDA-MB-231, and human umbilical vein endothelial cells (HUVEC) and compare their potency.

View Article and Find Full Text PDF

The phase III MAX clinical trial randomised patients with metastatic colorectal cancer (mCRC) to receive first-line capecitabine chemotherapy alone or in combination with the anti-VEGF-A antibody bevacizumab (± mitomycin C). We utilised this cohort to examine whether single nucleotide polymorphisms (SNPs) in VEGF-A, VEGFR1, and VEGFR2 are predictive of efficacy outcomes with bevacizumab or the development of hypertension. Genomic DNA extracted from archival FFPE tissue for 325 patients (69% of the MAX trial population) was used to genotype 16 candidate SNPs in VEGF-A, VEGFR1, and VEGFR2, which were analysed for associations with efficacy outcomes and hypertension.

View Article and Find Full Text PDF

Colorectal cancer (CRC) incidence in young adults is rising. Identifying genetic risk factors is fundamental for the clinical management of patients and their families. This study aimed to identify clinically significant germline variants among young adults with CRC.

View Article and Find Full Text PDF

Key problems of chemotherapies, as the mainstay of treatment for triple-negative breast cancer (TNBC), are toxicity and development of tumour resistance. Using response surface methodology, we previously optimised the combination of epimers of ginsenoside Rg3 (Rg3) for anti-angiogenic action. Here, we show that the optimised combination of 50 µM SRg3 and 25 µM RRg3 (C3), derived from an RSM model of migration of TNBC cell line MDA-MB-231, inhibited migration of MDA-MB-231 and HCC1143, in 2D and 3D migration assays ( < 0.

View Article and Find Full Text PDF

We previously showed how triterpene saponin bacopaside (bac) II, purified from the medicinal herb , induced cell death in colorectal cancer cell lines and reduced endothelial cell migration and tube formation, and further demonstrated a synergistic effect of a combination of bac I and bac II on the inhibition of breast cancer cell line growth. Here, we assessed the effects of bac I and II on the colorectal cancer HT-29 cell line, and mouse (2H-11) and human umbilical vein endothelial cell (HUVEC) lines, measuring outcomes including cell viability, proliferation, migration, tube formation, apoptosis, cytosolic Ca levels and plasma membrane integrity. Combined bac I and II, each applied at concentrations below IC values, caused a synergistic reduction of the viability and proliferation of HT-29 and endothelial cells, and impaired the migration of HT-29 and tube formation of endothelial cells.

View Article and Find Full Text PDF