Background: Characterizing intra-urban variation in air quality is important for epidemiological investigation of health outcomes and disparities. To date, however, few studies have been designed to capture spatial variation during select hours of the day, or to examine the roles of meteorology and complex terrain in shaping intra-urban exposure gradients.
Methods: We designed a spatial saturation monitoring study to target local air pollution sources, and to understand the role of topography and temperature inversions on fine-scale pollution variation by systematically allocating sampling locations across gradients in key local emissions sources (vehicle traffic, industrial facilities) and topography (elevation) in the Pittsburgh area.
Although intra-urban air pollution differs by season, few monitoring networks provide adequate geographic density and year-round coverage to fully characterize seasonal patterns. Here, we report winter intra-urban monitoring and land-use regression (LUR) results from the New York City Community Air Survey (NYCCAS). Two-week integrated samples of fine particles (PM(2.
View Article and Find Full Text PDFRoutine air monitoring provides data to assess urban scale temporal variation in pollution concentrations in relation to regulatory standards, but is not well suited to characterizing intraurban spatial variation in pollutant concentrations from local sources. To address these limitations and inform local control strategies, New York City developed a program to track spatial patterns of multiple air pollutants in each season of the year. Monitor locations include 150 distributed street-level sites chosen to represent a range of traffic, land-use and other characteristics.
View Article and Find Full Text PDFWe assessed humidity-corrected particulate matter (PM(2.5)) exposure and physical activity (using global positioning system monitors and diaries) among 18 people who commuted by car to Queens College, New York, New York, for 5 days, and then switched to commuting for the next 5 days via public transportation. The PM(2.
View Article and Find Full Text PDFPoly(lactic acid) (PLA)-supported dibenzoylmethane (dbm) and corresponding metal complexes have potential applications as biomaterials and catalysts. Using hydroxyl-functionalized dbm (i.e.
View Article and Find Full Text PDF