Electric field control of topologically nontrivial magnetic textures, such as skyrmions, provides a paradigm shift for future spintronics beyond the current silicon-based technology. While significant progress has been made by X-ray and neutron scattering studies, direct observation of such nanoscale spin structures and their dynamics driven by external electric fields remains a challenge in understanding the underlying mechanisms and harness functionalities. Here, using Lorentz transmission electron microscopy combined with electric and magnetic fields at liquid helium temperatures, we report the crystallographic orientation-dependent skyrmion responses to electric fields in thin slabs of magnetoelectric CuOSeO.
View Article and Find Full Text PDFChiral magnets have recently emerged as hosts for topological spin textures and related transport phenomena, which can find use in next-generation spintronic devices. The coupling between structural chirality and noncollinear magnetism is crucial for the stabilization of complex spin structures such as magnetic skyrmions. Most studies have been focused on the physical properties in homochiral states favored by crystal growth and the absence of long-ranged interactions between domains of opposite chirality.
View Article and Find Full Text PDFMany-body localization (MBL) has attracted significant attention because of its immunity to thermalization, role in logarithmic entanglement entropy growth, and opportunities to reach exotic quantum orders. However, experimental realization of MBL in solid-state systems has remained challenging. Here, we report evidence of a possible phonon MBL phase in disordered GaAs/AlAs superlattices.
View Article and Find Full Text PDFChiral spin textures stabilized by the interfacial Dzyaloshinkii-Moriya interaction, such as skyrmions and homochiral domain walls, have been shown to exhibit qualities that make them attractive for their incorporation in a variety of spintronic devices. However, for thicker multilayer films, mixed textures occur in which an achiral Bloch component coexists with a chiral Néel component of the domain wall to reduce the demagnetization field at the film surface. We show that an interlayer Dzyaloshinkii-Moriya interaction can break the degeneracy between Bloch chiralities.
View Article and Find Full Text PDFTopologically nontrivial spin textures such as vortices, skyrmions, and monopoles are promising candidates as information carriers for future quantum information science. Their controlled manipulation including creation and annihilation remains an important challenge toward practical applications and further exploration of their emergent phenomena. Here, we report controlled evolution of the helical and skyrmion phases in thin films of multiferroic Te-doped CuOSeO as a function of material thickness, dopant, temperature, and magnetic field using in situ Lorentz phase microscopy.
View Article and Find Full Text PDF