Ultrathin atomic layer deposited ceria films (< 20 nm) are capable of H2 heterolytic activation at room temperature, undergoing a significant reduction regardless of the absolute pressure, as measured under in-situ conditions by near ambient pressure X-ray photoelectron spectroscopy. ALD-ceria can gradually reduce as a function of H2 concentration under H2/O2 environments, especially for diluted mixtures below 10%. At room temperature, this reduction is limited to the surface region, where the hydroxylation of the ceria surface induces a charge transfer towards the ceria matrix, reducing Ce4+ cations to Ce3+.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2024
Understanding the interactions in hybrid systems based on graphene and functional oxides is crucial to the applicability of graphene in real devices. Here, we present a study of the structural defects occurring on graphene during the early stages of the growth of CoO, tailored by the electronic coupling between graphene and the substrate in which it is supported: as received pristine graphene on polycrystalline copper (coupled), cleaned in ultra-high vacuum conditions to remove oxygen contamination, and graphene transferred to SiO/Si substrates (decoupled). The CoO growth was performed at room temperature by thermal evaporation of metallic Co under a molecular oxygen atmosphere, and the early stages of the growth were investigated.
View Article and Find Full Text PDFCopper oxide appears to be a promising candidate for a hole transport layer (HTL) in emerging perovskite solar cells. Reasons for this are its good optical and electrical properties, cost-effectiveness, and high stability. However, is this really the case? In this study, we demonstrate that copper oxide, synthesized by a spray-coating method, is unstable in contact with formamidinium lead triiodide (FAPI) perovskite, leading to its decomposition.
View Article and Find Full Text PDF