Publications by authors named "J E Durantini"

A porphyrin-BODIPY dyad (P-BDP) was obtained through covalent bonding, featuring a two-segment design comprising a light-harvesting antenna system connected to an energy acceptor unit. The absorption spectrum of P-BDP resulted from an overlap of the individual spectra of its constituent parts, with the fluorescence emission of the BODIPY unit experiencing significant quenching (96 %) due to the presence of the porphyrin unit. Spectroscopic, computational, and redox investigations revealed a competition between photoinduced energy and electron transfer processes.

View Article and Find Full Text PDF

Diketopyrrolopyrrole (DPP) derivatives containing sulfonamide (Sulfonamide-DPP), pyridyl (Dipyridyl-DPP) and N-methylpyridyl (MePyridyl-DPP) substituents were assessed as antibacterial photosensitizers. Non-charged DPPs showed an intense absorption band centered at about 480 nm and green fluorescence emission (Φ  ~ 0.7) in acetonitrile.

View Article and Find Full Text PDF

The study of labeling selectivity and mechanisms of fluorescent organelle probes in living cells is of continuing interest in biomedical sciences. The tetracationic phthalocyanine-like ZnTM2,3PyPz photosensitizing dye induces a selective violet fluorescence in mitochondria of living HeLa cells under UV excitation that is due to co-localization of the red signal of the dye with NAD(P)H blue autofluorescence. Both red and blue signals co-localize with the green emission of the mitochondria probe, rhodamine 123.

View Article and Find Full Text PDF

The spreading of different infections can occur through direct contact with glass surfaces in commonly used areas. Incorporating the use of alternative therapies in these materials seems essential to reduce and also avoid bacterial resistance. In this work, the capability to kill microbes of glass surfaces coated with two electroactive metalated phthalocyanines (ZnPc-EDOT and CuPc-EDOT) is assessed.

View Article and Find Full Text PDF

A novel BOPHY-fullerene C dyad (BP-C ) was designed as a heavy-atom-free photosensitizer (PS) with potential uses in photodynamic treatment and reactive oxygen species (ROS)-mediated applications. BP-C consists of a BOPHY fluorophore covalently attached to a C moiety through a pyrrolidine ring. The BOPHY core works as a visible-light-harvesting antenna, while the fullerene C subunit elicits the photodynamic action.

View Article and Find Full Text PDF