Publications by authors named "J E Dildy-Mayfield"

Molecular mechanisms of anesthetic action on neurotransmitter receptors are poorly understood. The major excitatory neurotransmitter in the central nervous system is glutamate, and recent studies found that volatile anesthetics inhibit the function of the alpha-amino-3-hydroxyisoxazolepropionic acid subtype of glutamate receptors (e.g.

View Article and Find Full Text PDF

Cytoclean a commercially available detergent, has selective actions on ligand-gated ion channels. Cytoclean (0.0005-0.

View Article and Find Full Text PDF

1. The effects of n-alcohols on GABAA and glutamate receptor systems were examined, and in vitro effectiveness was compared with in vivo effects in mice and tadpoles. We expressed GABAA, NMDA, AMPA, or kainate receptors in Xenopus oocytes and examined the actions of n-alcohols on receptor function using two-electrode voltage clamp recording.

View Article and Find Full Text PDF

We assessed the involvement of specific glutamate receptors in the action of anesthetics. In addition to the clinical anesthetics enflurane, isoflurane and halothane, we tested novel halogenated compounds, which are anesthetic or nonanesthetic in vivo, on glutamate receptor (GluR) subunits. these volatile compounds as well as pentobarbital and phenobarbital were tested on kainate-induced currents in Xenopus oocytes expressing GluR1, GluR3, GluR2+3 or GluR6 subunits.

View Article and Find Full Text PDF

Molecular cloning of cDNAs coding for ligand-gated ion channel subunits makes it possible to study the pharmacology of recombinant receptors with defined subunit compositions. Many laboratories have used these techniques recently to study actions of agents that produce general anesthesia. We review the effects of volatile and intravenous anesthetics on recombinant GABAA, glycine, AMPA, kainate, NMDA, and 5HT3 receptors.

View Article and Find Full Text PDF