Functional magnetic resonance imaging (fMRI) has dramatically advanced non-invasive human brain mapping and decoding. Functional near-infrared spectroscopy (fNIRS) and high-density diffuse optical tomography (HD-DOT) non-invasively measure blood oxygen fluctuations related to brain activity, like fMRI, at the brain surface, using more-lightweight equipment that circumvents ergonomic and logistical limitations of fMRI. HD-DOT grids have smaller inter-optode spacing (~ 13 mm) than sparse fNIRS (~ 30 mm) and therefore provide higher image quality, with spatial resolution ~ 1/2 that of fMRI, when using the several source-detector distances (13-40 mm) afforded by the HD-DOT grid.
View Article and Find Full Text PDFSignificance: Decoding naturalistic content from brain activity has important neuroscience and clinical implications. Information about visual scenes and intelligible speech has been decoded from cortical activity using functional magnetic resonance imaging (fMRI) and electrocorticography, but widespread applications are limited by the logistics of these technologies.
Aim: High-density diffuse optical tomography (HD-DOT) offers image quality approaching that of fMRI but with the silent, open scanning environment afforded by optical methods, thus opening the door to more naturalistic research and applications.
Importance: Enhanced breast cancer screening with magnetic resonance imaging (MRI) is recommended to women with elevated risk of breast cancer, yet uptake of screening remains unclear after genetic testing.
Objective: To evaluate uptake of MRI after genetic results disclosure and counseling.
Design, Setting, And Participants: This multicenter cohort study was conducted at the University of Southern California Norris Cancer Hospital, the Los Angeles General Medical Center, and the Stanford University Cancer Institute.
Several hydroxysteroid dehydrogenase 17-beta 13 variants have previously been identified as protective against metabolic dysfunction-associated steatohepatitis (MASH) fibrosis, ballooning and inflammation, and as such this target holds significant therapeutic potential. However, over 5 years later, the function of 17B-HSD13 remains unknown. Structure-aided design enables the development of potent and selective sulfonamide-based 17B-HSD13 inhibitors.
View Article and Find Full Text PDFSignificance: Determining the long-term cognitive impact of infections is clinically challenging. Using functional cortical connectivity, we demonstrate that interhemispheric cortical connectivity is decreased in individuals with acute Zika virus (ZIKV) encephalitis. This correlates with decreased presynaptic terminals in the somatosensory cortex.
View Article and Find Full Text PDF