Introduction: Dental pulp regeneration is challenging in endodontics. Cellular therapy is an alternative approach to induce dental pulp regeneration. Mesenchymal stromal cells (MSCs) have the capacity to induce dental pulp-like tissue formation.
View Article and Find Full Text PDFBackground: Congenital pseudoarthrosis of the tibia (CPT) is an uncommon disease associated with failure to achieve bone union and recurrent fractures. There is evidence showing that CPT is associated with decreased osteogenesis. Based on the capacity of mesenchymal stromal cells (MSCs) to induce osteogenesis, we develop an osteogenic organoid (OstO) constituted by these cells, and other components of the bone niche, for inducing bone formation in a child diagnosed with CPT.
View Article and Find Full Text PDFBackground: Several clinical studies have shown that cellular therapy based on mesenchymal stromal cells (MSCs) transplantation may accelerate wound healing. One major challenge is the delivery system used for MSCs transplantation. In this work, we evaluated the capacity of a scaffold based on polyethylene terephthalate (PET) to maintain the viability and biological functions of MSCs, in vitro.
View Article and Find Full Text PDFBackground: Under certain clinical and experimental conditions hematopoiesis occurs in other site than bone marrow (BM), such as the liver. Here, we develop a 3D organoid that mimics several components of the hematopoietic niche present during liver extramedullary hematopoiesis.
Aim: To evaluate the capacity of a 3D hematopoietic organoid (3D-HO) to function as a hematopoietic like-niche allowing for blood cell production outside of the BM.
Cellular therapy and platelet-rich plasma (PRP) have been used as a treatment for skin wounds. Previous evidence has shown that mesenchymal stromal cells (MSC) may improve skin wound healing. In contrast, contradictory effects have been reported by using PRP treatment on skin wound healing.
View Article and Find Full Text PDF