Publications by authors named "J E Andersen"

Nutrient deprivation is a major trigger of autophagy, a conserved quality control and recycling process essential for cellular and tissue homeostasis. In a high-content image-based screen of the human ubiquitome, we here identify the E3 ligase Pellino 3 (PELI3) as a crucial regulator of starvation-induced autophagy. Mechanistically, PELI3 localizes to autophagic membranes, where it interacts with the ATG8 proteins through an LC3-interacting region (LIR).

View Article and Find Full Text PDF

The focus on microalgae for applications in several fields, e.g. resources for biofuel, the food industry, cosmetics, nutraceuticals, biotechnology, and healthcare, has gained increasing attention over the last decades.

View Article and Find Full Text PDF

The COVID-19 pandemic led to significant shifts in societal norms and individual behaviors, including changes in physical activity levels. This study examines the relationship between socioeconomic and sociodemographic factors and changes in physical activity levels during the pandemic compared to pre-pandemic levels among adult Arkansans. Survey data were collected from 1,205 adult Arkansans in July and August 2020, capturing socioeconomic and sociodemographic characteristics and information on physical activity changes since the onset of the pandemic.

View Article and Find Full Text PDF

Pro-inflammatory cytokines, like interleukin-1 beta and interferon gamma, are known to activate signalling pathways causing pancreatic beta cell death and dysfunction, contributing to the onset of diabetes. Targeting cytokine signalling pathways offers a potential strategy to slow or even halt disease progression, reducing reliance on exogenous insulin and improving glucose regulation. This study explores the protective and proliferative effects of breitfussin C (BfC), a natural compound isolated from the Arctic marine hydrozoan Thuiaria breitfussi, on pancreatic beta cells exposed to pro-inflammatory cytokines.

View Article and Find Full Text PDF

Background: Small Bowel Adenocarcinoma (SBA) is a rare gastrointestinal cancer with a limited understanding of the molecular pathology. This study aims to bridge the knowledge gap, providing a robust molecular foundation for SBA and addressing the clinical challenges inherent in treating this orphan disease. The study proposes to redefine the clinical management for SBA patients through advanced molecular profiling techniques to improve potential precision medicine.

View Article and Find Full Text PDF