Publications by authors named "J Duval"

There is a growing interest in the development of methods for the detection of nanoparticle (NP) toxicity to living organisms based on the analysis of relevant multidimensional data sets. In particular the detection of preliminary signs of NPs toxicity effects would benefit from the selection of data featuring NPs-induced alterations of biological barriers. Accordingly, we present an original Topological Data Analysis (TDA) of the nanomechanical properties of Escherichia coli cell surface, evaluated by multiparametric Atomic Force Microscopy (AFM) after exposure of the cells to increasing concentrations of titanium dioxide nanoparticles (TiONPs).

View Article and Find Full Text PDF

Agroecology is among the most promising options to alleviate the negative impacts of animal farming on the environment and build local food systems based on ethically acceptable production methods. So far, most of the research on agroecological animal production systems was conducted at farm scale, and the potential of agroecological principles addressing social dimensions and food system-level approaches has been underexplored. Here, we analyse how the whole set of agroecological principles was mobilised in five case studies on grassland-based, silvopastoral or integrated crop-livestock systems in Switzerland, Guadeloupe, French uplands, Bulgaria and Andalucía.

View Article and Find Full Text PDF
Article Synopsis
  • * The study examines how different concentrations of cadmium (Cd(II)) affect bioluminescence in these biosensors, considering various factors like hydrogel thickness, nutrient availability, and the charge of the hydrogel material.
  • * Results show a consistent relationship between bioluminescence output and free Cd concentration, highlighting how electrostatic interactions and metal accumulation impact the biosensors' metabolic activity and overall effectiveness in detecting environmental changes.
View Article and Find Full Text PDF

Hypothesis: Electrostatic interactions between colloids are governed by the overlap of their electric double layers (EDLs) and the ionic screening of the structural charges distributed at their core surface and/or in their peripheral ion-permeable shell, relevant to soft particles like polymer colloids and microorganisms. Whereas ion size-mediated effects on the organization of isolated EDLs have been analysed, their contribution to the electrostatic energy of interacting soft particles has received less attention THEORY AND SIMULATIONS: Herein, we elaborate a formalism to evaluate the electrostatic interaction energy profile between spherical core/shell particles, building upon a recent Poisson-Boltzmann theory corrected for the sizes of ions and particle structural charges, for ion correlations and dielectric decrement. Interaction energy is derived from pairwise disjoining pressure and exact Surface Element Integration method, beyond the Derjaguin approximation.

View Article and Find Full Text PDF

The ability of bacteria to interact with their environment is crucial to form aggregates and biofilms, and develop a collective stress resistance behavior. Despite its environmental and medical importance, bacterial aggregation is poorly understood and mediated by few known adhesion structures. Here, we identified a new role for a surface-exposed protein, YfaL, which can self-recognize and induce bacterial autoaggregation.

View Article and Find Full Text PDF