Publications by authors named "J Dulinska"

This paper presents a comprehensive assessment of the suitability of seven commercially available polymers for crafting laboratory models designed for dynamic shaking-table tests using 3D-printing technology. The objective was to determine whether 3D-printed polymer models are effective for dynamic assessments of structures. The polymers underwent experimental investigations to assess their material properties, i.

View Article and Find Full Text PDF

This paper aims to identify the optimal reinforced concrete bridge construction for regions at risk of mining-induced seismic shocks. This study compares the performances of two common bridge types made of the same structural tissue, i.e.

View Article and Find Full Text PDF

Developing new structural materials, such as composite materials, has provided many opportunities in bridge engineering. Among these materials, glass-fiber-reinforced polymers (GFRPs), in particular, have found applications in footbridges. However, some of the commonly recognized advantages of GFRPs, such as the high values of the strength/weight ratio, can also be considered disadvantageous for certain realizations, particularly when the composite material used in a footbridge is, for example, subjected to dynamic actions such as those that are induced by wind and walking and/or running users.

View Article and Find Full Text PDF

In this article, the possibility and the pertinence of using 3D printed polymeric materials for models in modal tests on shaking tables were recognized. Four stages of the research have been linked: The material properties investigation, the field experiment on the modal properties of the reinforced concrete chimney (a prototype), the shaking table tests on the modal properties of the 3D printed polymer model of the chimney, scaled according to the similarity criteria, and the numerical calculations of the FE model of the 3D printed mockup. First, the investigation of the properties of 3D printed polymer materials revealed that the direction of lamination had no significant effect on the modulus of elasticity of the material.

View Article and Find Full Text PDF

The impact of the dynamic soil-structure interaction (DSSI) on the response of a single-span footbridge to mining-induced shocks was assessed. Firstly, the eigen values, modes and damping of the footbridge were evaluated based on in-operation field tests. Then, natural frequencies were determined numerically by a model usually used in static calculations, i.

View Article and Find Full Text PDF