Acidogenic co-fermentation of waste activated sludge (WAS) and food waste (FW) under thermophilic conditions enhances process consistency, while overcoming the problem of acetic acid consumption due to growing methanogens. Two long-term continuous co-fermentation experiments were carried out with a WAS:FW mixture (70:30 % in VS) at organic loading rate of 8 gVS/(L·d). Experiment 1 assessed the impact of temperature (35 °C and 55 °C) and WAS origin (WAS_A and WAS_B) in two collection periods.
View Article and Find Full Text PDFThis study presents a new modeling approach for nitrogen recovery in gas-permeable membrane (GPM) contactors, including both ammonia and water transport dynamics. A distinct feature of the model is its capacity to model water transport across the membrane, which has been overlooked in most publications. Osmotic pressure differences are used to predict the behavior of ammonia and water transport in the GPM contactor.
View Article and Find Full Text PDFTwo perturbations were investigated in acidogenic co-fermentation of waste activated sludge (WAS) and food waste in continuous mesophilic fermenters: increasing the organic loading rate (OLR) and changing the WAS. A control reactor maintained an OLR of 11 gVS/(L·d), while a test reactor had a prolonged OLR change to 18 gVS/(L·d). For each OLR, two WAS were studied.
View Article and Find Full Text PDFThis work aims to improve the continuous co-fermentation of waste activated sludge (WAS) and food waste (FW) by investigating the long-term impact of temperature on fermentation performance and the underpinning microbial community. Acidogenic co-fermentation of WAS and FW (70:30 % VS-basis) to produce volatile fatty acids (VFA) was studied in continuous fermenters at different temperatures (25, 35, 45, 55 °C) at an organic loading rate of 11 gVS/(L·d) and a hydraulic retention time of 3.5 days.
View Article and Find Full Text PDFGas-permeable membrane (GPM) technology is gaining interest to recover nitrogen from residual effluents due to its effectiveness, simple operation and capacity of producing a nutrient rich product with fertilising value. In this study, a GPM contactor was used at 25 °C to recover total ammoniacal nitrogen (TAN) from swine slurry as a concentrated (NH)SO solution. Firstly, a synthetic solution was tested on a wide pH range (6-12).
View Article and Find Full Text PDF