Nucleotide-binding leucine-rich repeat (NLR) disease resistance genes typically confer resistance against races of a single pathogen. Here, we report that Yr87/Lr85, an NLR gene from Aegilops sharonensis and Aegilops longissima, confers resistance against both P. striiformis tritici (Pst) and Puccinia triticina (Pt) that cause stripe and leaf rust, respectively.
View Article and Find Full Text PDFWild wheat relative Aegilops biuncialis offers valuable traits for crop improvement through interspecific hybridization. However, gene transfer from Aegilops has been hampered by difficulties in detecting introgressed U- and M-genome chromatin in the wheat background at high resolution. The present study applied DArTseq technology to genotype two backcrossed populations (BC382, BC642) derived from crosses of wheat line Mv9kr1 with Ae.
View Article and Find Full Text PDFCultivated and wild species of the genus rye () are important but underexploited gene sources for increasing the genetic diversity of bread wheat. Gene transfer is possible via bridge genetic materials derived from intergeneric hybrids. During this process, it is essential to precisely identify the rye chromatin in the wheat genetic background.
View Article and Find Full Text PDF