Publications by authors named "J Dluzewska"

Meiotic crossover, i.e. the reciprocal exchange of chromosome fragments during meiosis, is a key driver of genetic diversity.

View Article and Find Full Text PDF

In this paper, we use FTIR spectroscopy to characterize the hydration water of ectoine, its interactions with two peptides-diglycine and NAGMA, and the properties of water molecules in the hydration spheres of both peptides changed by the presence of the osmolyte. We found that the interaction of ectoine with the peptide hydration shells had no effect on its own hydration sphere. However, the enhanced hydration layer of the osmolyte influences the hydration shells of both peptides and does so in a different way for both peptides: (1) the interfacial interaction of the NAGMA peptide and ectoine hydration spheres strengthened the hydration shell of this peptide; (2) the inclusion of water molecules from the ectoine hydration sphere into the diglycine hydration sphere had only a marginally enhancing effect.

View Article and Find Full Text PDF

Meiotic crossovers can be formed through the interfering pathway, in which one crossover prevents another from forming nearby, or by an independent non-interfering pathway. In Arabidopsis, local sequence polymorphism between homologs can stimulate interfering crossovers in a MSH2-dependent manner. To understand how MSH2 regulates crossovers formed by the two pathways, we combined Arabidopsis mutants that elevate non-interfering crossovers with msh2 mutants.

View Article and Find Full Text PDF

In hybrid organisms, genetically divergent homologous chromosomes pair and recombine during meiosis; however, the effect of specific types of polymorphisms on crossover is poorly understood. Here, to analyze this in Arabidopsis, we develop the seed-typing method that enables the massively parallel fine-mapping of crossovers by sequencing. We show that structural variants, observed in one of the generated intervals, do not change crossover frequency unless they are located directly within crossover hotspots.

View Article and Find Full Text PDF

The number of crossovers during meiosis is relatively low, so multiple meioses need to be analyzed to accurately measure crossover frequency. In Arabidopsis, systems based on the segregation of fluorescent T-DNA reporters that are expressed in seeds (fluorescent-tagged lines, FTLs) allow for an accurate measurement of crossover frequency in specific chromosome regions. A major advantage of FTL-based experiments is the ability to analyze thousands of seeds for each biological replicate, which requires the use of automatic seed scoring.

View Article and Find Full Text PDF