Noise-induced hearing loss (NIHL) is a common sensorineural hearing impairment that lacks U.S. Food and Drug Administration-approved drugs.
View Article and Find Full Text PDFUnlabelled: Noise-Induced Hearing Loss (NIHL) represents a widespread disease for which no therapeutics have been approved by the Food and Drug Administration (FDA). Addressing the conspicuous void of efficacious in vitro or animal models for high throughput pharmacological screening, we utilized an in silico transcriptome-oriented drug screening strategy, unveiling 22 biological pathways and 64 promising small molecule candidates for NIHL protection. Afatinib and zorifertinib, both inhibitors of the Epidermal Growth Factor Receptor (EGFR), were validated for their protective efficacy against NIHL in experimental zebrafish and murine models.
View Article and Find Full Text PDFCochlear sensitivity, essential for communication and exploiting the acoustic environment, results from sensory-motor outer hair cells (OHCs) operating in a structural scaffold of supporting cells and extracellular cortilymph within the organ of Corti (OoC). Cochlear sensitivity control is hypothesized to involve interaction between the OHCs and OoC supporting cells (e.g.
View Article and Find Full Text PDFThe use of light as a tool to manipulate cellular processes or optogenetics has developed rapidly in various biological fields over the past decade. Through the addition of photosensitive proteins, light can be used to control intracellular mechanisms, map neuronal pathways, and alter variables that would be difficult to control using other mechanisms. Photons of a specific wavelength affect these light sensitive targets for in vitro or in vivo experiments.
View Article and Find Full Text PDF