Publications by authors named "J Denlinger"

Since the initial discovery of 2D van der Waals (vdW) materials, significant effort has been made to incorporate the three properties of magnetism, band structure topology, and strong electron correlations-to leverage emergent quantum phenomena and expand their potential applications. However, the discovery of a single vdW material that intrinsically hosts all three ingredients has remained an outstanding challenge. Here, the discovery of a Kondo-interacting topological antiferromagnet is reported in the vdW 5f electron system UOTe.

View Article and Find Full Text PDF

Rashba states have been actively revisited as a platform for advanced applications such as spintronics and topological quantum computation. Yet, access to the Rashba state is restricted to the specific material sets, and the methodology to control the Rashba state is not established. Here, we report the Rashba states on the (001) surface of KZnBi, a 3D Dirac semimetal.

View Article and Find Full Text PDF

Flat bands and nontrivial topological physics are two important topics of condensed matter physics. With a unique stacking configuration analogous to the Su-Schrieffer-Heeger model, rhombohedral graphite (RG) is a potential candidate for realizing both flat bands and nontrivial topological physics. Here, we report experimental evidence of topological flat bands (TFBs) on the surface of bulk RG, which are topologically protected by bulk helical Dirac nodal lines via the bulk-boundary correspondence.

View Article and Find Full Text PDF