Key Points: Spontaneous sarcoplasmic reticulum (SR) Ca release events increased in fructose-rich diet mouse (FRD) myocytes vs. control diet (CD) mice, in the absence of significant changes in SR Ca load. In HEK293 cells, hyperglycaemia significantly enhanced [ H]ryanodine binding and Ca /calmodulin-dependent protein kinase II (CaMKII) phosphorylation of RyR2-S2814 residue vs.
View Article and Find Full Text PDFBackground: Heart failure and arrhythmias occur more frequently in patients with type 2 diabetes (T2DM) than in the general population. T2DM is preceded by a prediabetic condition marked by elevated reactive oxygen species (ROS) and subclinical cardiovascular defects. Although multifunctional Ca2+ calmodulin-dependent protein kinase II (CaMKII) is ROS-activated and CaMKII hyperactivity promotes cardiac diseases, a link between prediabetes and CaMKII in the heart is unprecedented.
View Article and Find Full Text PDFAnnexin A4 (AnxA4), a Ca(2+)- and phospholipid-binding protein, is up-regulated in the human failing heart. In this study, we examined the impact of AnxA4 on β-adrenoceptor (β-AR)/cAMP-dependent signal transduction. Expression of murine AnxA4 in human embryonic kidney (HEK)293 cells dose-dependently inhibited cAMP levels after direct stimulation of adenylyl cyclases (ACs) with forskolin (FSK), as determined with an exchange protein activated by cAMP-Förster resonance energy transfer (EPAC-FRET) sensor and an ELISA (control vs.
View Article and Find Full Text PDFCirc Arrhythm Electrophysiol
December 2011
Background: Digitalis-induced Na(+) accumulation results in an increase in Ca(2+)(i) via the Na(+)/Ca(2+) exchanger, leading to enhanced sarcoplasmic reticulum (SR) Ca(2+) load, responsible for the positive inotropic and toxic arrhythmogenic effects of glycosides. A digitalis-induced increase in Ca(2+)(i) could also activate calcium-calmodulin kinase II (CaMKII), which has been shown to have proarrhythmic effects. Here, we investigate whether CaMKII underlies digitalis-induced arrhythmias and the subcellular mechanisms involved.
View Article and Find Full Text PDFTo explore whether CaMKII-dependent phosphorylation events mediate reperfusion arrhythmias, Langendorff perfused hearts were submitted to global ischemia/reperfusion. Epicardial monophasic or transmembrane action potentials and contractility were recorded. In rat hearts, reperfusion significantly increased the number of premature beats (PBs) relative to pre-ischemic values.
View Article and Find Full Text PDF