Background: In order to grow, plants rely on soil nutrients which can vary both spatially and temporally depending on the environment, the soil type or the microbial activity. An essential nutrient is nitrogen, which is mainly accessible as nitrate and ammonium. Many studies have investigated transport genes for these ions in Arabidopsis thaliana and recently in crop species, including Maize, Rice and Barley.
View Article and Find Full Text PDFd-pinitol is the most commonly accumulated sugar alcohol in the Leguminosae family and has been observed to increase significantly in response to abiotic stress. While previous studies have identified genes involved in d-pinitol synthesis, no study has investigated transcript expression in planta. The present study quantified the expression of several genes involved in d-pinitol synthesis in different plant tissues and investigated the accumulation of d-pinitol, -inositol and other metabolites in response to a progressive soil drought in soybean ().
View Article and Find Full Text PDFMaize (, L.) yield is strongly influenced by external nitrogen inputs and their availability in the soil solution. Overuse of nitrogen-fertilizers can have detrimental ecological consequences through increased nitrogen pollution of water and the release of the potent greenhouse gas, nitrous oxide.
View Article and Find Full Text PDFNitrate uptake by plant cells requires both high- and low-affinity transport activities. nitrate transporter 1/peptide transporter family (NPF) 6.3 is a dual-affinity plasma membrane transport protein that has both high- and low-affinity functions.
View Article and Find Full Text PDFNRT2.7 is a seed-specific high-affinity nitrate transporter controlling nitrate content in Arabidopsis mature seeds. The objective of this work was to analyse further the consequences of the nrt2.
View Article and Find Full Text PDF