Our contribution demonstrates that rhodium, an element that has barely been reported as an active metal for selective dehydrogenation of alkanes becomes a very active, selective, and robust dehydrogenation catalyst when exposed to propane in the form of single atoms at the interface of a solid-supported, highly dynamic liquid Ga-Rh mixture. We demonstrate that the transition to a fully liquid supported alloy droplet at Ga/Rh ratios above 80, results in a drastic increase in catalyst activity with high propylene selectivity. The combining results from catalytic studies, X-ray photoelectron spectroscopy, IR-spectroscopy under reaction conditions, microscopy, and density-functional theory calculations, we obtained a comprehensive microscopy picture of the working principle of the Ga-Rh supported catalytically active liquid metal solution.
View Article and Find Full Text PDFA strategy to develop improved catalysts is to create systems that merge the advantages of heterogeneous and molecular catalysis. One such system involves supported liquid-phase catalysts, which feature a molecularly defined, catalytically active liquid film/droplet layer adsorbed on a porous solid support. In the past decade, this concept has also been extended to supported ionic liquid-phase catalysts.
View Article and Find Full Text PDF