Large canids (wolves, dogs, and coyote) and people form a close relationship in northern (subarctic and arctic) socioecological systems. Here, we document the antiquity of this bond and the multiple ways it manifested in interior Alaska, a region key to understanding the peopling of the Americas and early northern lifeways. We compile original and existing genomic, isotopic, and osteological canid data from archaeological, paleontological, and modern sites.
View Article and Find Full Text PDFPurpose: To evaluate the relative diagnostic yield of clinical germline genomic tests in a diverse pediatric cancer population.
Patients And Methods: The KidsCanSeq study enrolled pediatric cancer patients across six sites in Texas. Germline analysis included both exome sequencing and a therapy-focused pediatric cancer gene panel.
Gauge theories are powerful theoretical physics tools that allow complex phenomena to be reduced to simple principles and are used in both high-energy and condensed matter physics. In the latter context, gauge theories are becoming increasingly popular for capturing the intricate spin correlations in spin liquids, exotic states of matter in which the dynamics of quantum spins never ceases, even at absolute zero temperature. We consider a spin system on a three-dimensional pyrochlore lattice where emergent gauge fields not only describe the spin liquid behavior at zero temperature but crucially determine the system's temperature evolution, with distinct gauge fields giving rise to different spin liquid phases in separate temperature regimes.
View Article and Find Full Text PDFRecognition of patients with multiple diagnoses, and the unique challenges they pose to clinicians and laboratorians, is increasing rapidly as genome-wide genetic testing grows in prevalence. We describe a unique patient with dual diagnoses of PDCD10-related cerebral cavernous malformations and ETV6-related thrombocytopenia with associated neutropenia. She presented with brain abscesses as an infant, which is highly atypical for these disorders in isolation.
View Article and Find Full Text PDFQuantum spin liquids (QSLs) have become a key area of research in magnetism due to their remarkable properties, such as long-range entanglement, fractional excitations, and topologically protected phenomena. Recently, the search for QSLs has expanded into the three-dimensional world, despite the suppression of quantum fluctuations due to high dimensionality. A new candidate material, KNi(SO), belongs to the langbeinite family and consists of two interconnected trillium lattices.
View Article and Find Full Text PDF