Idiopathic osteoporosis (IOP) is a rare form of early-onset osteoporosis diagnosed in patients with no known metabolic or hormonal cause of bone loss and unknown pathogenesis. Patients with IOP commonly report both childhood fractures and family history of osteoporosis, raising the possibility of genetic etiologies of IOP. Whole-exome sequencing analyses of different IOP cohorts identified multiple variants in melatonin receptor 1A () with a potential pathogenic outcome.
View Article and Find Full Text PDFGenomic regulation of cardiomyocyte differentiation is central to heart development and function. This study uses genetic loss-of-function human-induced pluripotent stem cell-derived cardiomyocytes to evaluate the genomic regulatory basis of the non-DNA-binding homeodomain protein HOPX. We show that HOPX interacts with and controls cardiac genes and enhancer networks associated with diverse aspects of heart development.
View Article and Find Full Text PDFBlood and lymphatic vessels form a versatile transport network and provide inductive signals to regulate tissue-specific functions. Blood vessels in bone regulate osteogenesis and hematopoiesis, but current dogma suggests that bone lacks lymphatic vessels. Here, by combining high-resolution light-sheet imaging and cell-specific mouse genetics, we demonstrate presence of lymphatic vessels in mouse and human bones.
View Article and Find Full Text PDFFace evaluation and first impression generation can be affected by multiple face elements such as invariant facial features, gaze direction and environmental context; however, the composite modulation of eye gaze and illumination on faces of different gender and ages has not been previously investigated. We aimed at testing how these different facial and contextual features affect ratings of social attributes. Thus, we created and validated the Bi-AGI Database, a freely available new set of male and female face stimuli varying in age across lifespan from 18 to 87 years, gaze direction and illumination conditions.
View Article and Find Full Text PDFThe endocrine system consists of several highly vascularized glands that produce and secrete hormones to maintain body homeostasis and regulate a range of bodily functions and processes, including growth, metabolism and development. The dense and highly vascularized capillary network functions as the main transport system for hormones and regulatory factors to enable efficient endocrine function. The specialized capillary types provide the microenvironments to support stem and progenitor cells, by regulating their survival, maintenance and differentiation.
View Article and Find Full Text PDF