Publications by authors named "J DELVILLE"

This study focuses on the development of environmentally friendly Au-CuS/CuInS heteronanotrimers. The chosen strategy relies on the laser photodeposition of a single gold nanodot (ND) onto Janus Cu S/CuInS heteronanocrystals (HNCs). This method offers precise control over the number, location, and size (5 to 8 nm) of the Au NDs by adjusting laser power for the career production, concentration of hole scavenger for charge equilibration in redox reactions, and gold precursor concentration, and exposure time for the final ND size.

View Article and Find Full Text PDF

Domain decay is at the heart of the so-called evaporation-condensation Ostwald-ripening regime of phase ordering kinetics, where the growth of large domains occurs at the expense of smaller ones, which are expected to "evaporate." We experimentally investigate such decay dynamics at the level of a single spherical domain picked from one phase in coexistence and brought into the other phase by an optomechanical approach, in a near-critical phase-separated binary liquid mixture. We observe that the decay dynamics is generally not compatible with the theoretically expected surface-tension decay laws for conserved order parameters.

View Article and Find Full Text PDF

We report on numerical simulation of fluid interface deformations induced by either acoustic or optical radiation pressure. This is done by solving simultaneously the scalar wave propagation equation and the two-phase flow equations using the boundary element method. Using dimensional analysis, we show that interface deformation morphogenesis is universal, i.

View Article and Find Full Text PDF

We study the spreading of droplets in a near-critical phase-separated liquid mixture, using a combination of experiments, lubrication theory and finite-element numerical simulations. The classical Tanner's law describing the spreading of viscous droplets is robustly verified when the critical temperature is neared. Furthermore, the microscopic cut-off length scale emerging in this law is obtained as a single free parameter for each given temperature.

View Article and Find Full Text PDF

Controlling the deposition of particles is of great importance in many applications. In this work, we study particle deposition driven by Marangoni flows, triggered by laser absorption inside an evaporating droplet. When the laser is turned on, thermal gradients are generated and produce a toroidal Marangoni flow that concentrates the particles around the laser beam and ultimately controls the final deposition.

View Article and Find Full Text PDF