Plastic poses a significant environmental impact due to its chemical resilience, leading to prolonged and degradation times and resulting in widespread adverse effects on global flora and fauna. Cutinases are essential enzymes in the biodegradation process of synthetic polymers like polyethylene terephthalate (PET), which recognized organisms can break down. Here, we used molecular dynamics and binding free energy calculations to explore the interaction of nine synthetic polymers, including PET, with Cutinase from Fusarium oxysporum (FoCut).
View Article and Find Full Text PDFStatement Of Problem: Translucent zirconias are promising materials for monolithic prostheses. However, information on their optical behavior after sintering and aging protocols is scarce.
Purpose: The purpose of this in vitro study was to evaluate the color and translucency of zirconia subjected to different sintering temperatures and aging.
Microfibrillated cellulose (MFC), a sustainable material derived from biomass, stands out as an environmentally friendly alternative for developing chemical sensors owing to its advantageous properties, including high porosity, surface area, and available surface functional groups. Herein, we propose a simple and low-cost strategy for developing cellulose-based strips for the colorimetric detection of total iron in water. The strips were prepared by functionalizing MFC casting membranes with 1-(2-Thiazolylazo)-2-naphthol (TAN), which was then characterized by structural and morphological techniques.
View Article and Find Full Text PDFApolipoprotein E (ApoE), especially the ApoE4 isotype, is suggested to influence the severity of respiratory viral infections; however, this association is still unclear. The presence of allele ε4 impacts the development of flu-like syndromes. This study aimed to evaluate the impact of the Apo E4 isoform on the severity and duration of flu-like syndromes, including the coronavirus disease COVID-19.
View Article and Find Full Text PDFBorneol, a compound found in resin-rich plants, is known for its aromatic and therapeutic properties. Widely used in countries, such as China, Japan, and Southeast Asia, borneol has also demonstrated efficacy in nanodrug administration. The primary objective of this study is to understand how borneol induces oxidative stress, its impact on the attraction and repulsion of , and its acute toxicity.
View Article and Find Full Text PDF