Publications by authors named "J D Toth"

Coenzyme Q10 (CoQ10) plays a crucial role in facilitating electron transport during oxidative phosphorylation, thus contributing to cellular energy production. Statin treatment causes a decrease in CoQ10 levels in muscle tissue as well as in serum, which may contribute to the musculoskeletal side effects. Therefore, we aimed to assess the effect of newly initiated statin treatment on serum CoQ10 levels after acute ST-elevation myocardial infarction (STEMI) and the correlation of CoQ10 levels with key biomarkers of subclinical or clinically overt myopathy.

View Article and Find Full Text PDF

Tuberculosis (TB) presents significant medical challenges, largely due to the genetic diversity of , which enhances the resilience and resistance of the pathogen to first-line treatments. In response to the global rise of drug-resistant TB, second-line antitubercular drugs like bedaquiline (BDQ), linezolid (LZD), and clofazimine (CFZ) have become critical treatment options. Understanding the molecular changes these drugs induce is essential for optimizing TB therapy.

View Article and Find Full Text PDF

The aim of the present research was to test the hypothesis that rate of force development (RFD) during a handgrip task of the dominant arm in three different positions is associated with maximal post-impact ball speed of flat serve (PIBS). Altogether 23 elite junior boys (aged 14.84 ± 2.

View Article and Find Full Text PDF
Article Synopsis
  • The pathogen's long-term success is linked to its ability to survive within macrophages and limited response to antibiotics, raising concerns about drug resistance.
  • Despite high drug resistance rates, the low mutation rates of mycobacteria suggest that new resistant strains primarily arise from non-genetic adaptations rather than genetic mutations.
  • Research showed that while antibiotic exposure does not increase mutation rates, it does lead to rapid adaptation through non-genetic mechanisms and the activation of DNA repair pathways.
View Article and Find Full Text PDF

Mechanical properties of the extracellular matrix (ECM) critically regulate a number of important cell functions including growth, differentiation and migration. Type I collagen and glycosaminoglycans (GAGs) are two primary components of ECMs that contribute to mammalian tissue mechanics, with the collagen fiber network sustaining tension, and GAGs withstanding compression. The architecture and stiffness of the collagen network are known to be important for cell-ECM mechanical interactions via cell surface adhesion receptor integrin.

View Article and Find Full Text PDF