Publications by authors named "J D Taurog"

Objective: We undertook this study to examine the functional basis for epistasis between endoplasmic reticulum aminopeptidase 1 (ERAP1) and HLA-B27 in experimental spondyloarthritis (SpA).

Methods: ERAP1-knockout rats were created using genome editing and bred with HLA-B27/human β -microglobulin-transgenic (HLA-B27-Tg) rats and HLA-B7-Tg rats. The effects of ERAP1 deficiency on HLA allotypes were determined using immunoprecipitation and immunoblotting, flow cytometry, allogeneic T cell proliferation assays, and gene expression analyses.

View Article and Find Full Text PDF

Spondyloarthritis (SpA) is characterized by inflammation, articular bone erosions and pathologic new bone formation. Targeting TNFα or IL-17A with current available therapies reduces inflammation in SpA, however, treatment of the bone pathology in SpA remains an unmet clinical need. Activation of the mammalian target Of rapamycin (mTOR) promotes IL-17A expression and osteogenesis.

View Article and Find Full Text PDF

Purpose: Axial spondyloarthritis (SpA) is a group of diseases with temporally disseminated symptoms and clinical signs, which render the diagnosis challenging. Laboratory and MRI findings are used in addition for confirming the diagnosis and evaluation of disease activity. The purpose of this study was to evaluate clinically suspected axial SpA to determine the technical success of a multiparametric and 3D rheumatology lumbosacral MR imaging (MRLI) protocol and to assess the disease distribution, inter-reader reliability, and impact on patient management.

View Article and Find Full Text PDF

Objective: It remains unclear if and how inflammation and new bone formation in spondyloarthritis (SpA) are coupled. We undertook this study to assess the hypothesis that interleukin-17A (IL-17A) is a pivotal driver of both processes.

Methods: The effect of tumor necrosis factor (TNF) and IL-17A on osteogenesis was tested in an osteoblastic differentiation assay using SpA fibroblast-like synoviocytes (FLS) differentiated with dexamethasone, β-glycophosphatase, and ascorbic acid.

View Article and Find Full Text PDF