Children born with congenital upper limb absence exhibit consistent and distinguishable levels of biological control over their affected muscles, assessed through surface electromyography (sEMG). This represents a significant advancement in determining how these children might utilize sEMG-controlled dexterous prostheses. Despite this potential, the efficacy of employing conventional sEMG classification techniques for children born with upper limb absence is uncertain, as these techniques have been optimized for adults with acquired amputations.
View Article and Find Full Text PDFDespite significant technological progress in prosthetic hands, a device with functionality akin to a biological extremity is far from realization. To better support the development of next-generation technologies, we investigated the grasping capabilities of clinically prescribable and commercially available (CPCA) prosthetic hands against those that are 3D-printed, which offer cost-effective and customizable solutions. Our investigation utilized the Anthropomorphic Hand Assessment Protocol (AHAP) as a benchtop evaluation of the multi-grasp performance of 3D-printed devices against CPCA prosthetic hands.
View Article and Find Full Text PDFBackground: COVID-19 has put a huge strain on the healthcare systems worldwide, requiring unprecedented intensive care resources. There is still an unmet clinical need for easily available biomarkers capable of predicting the risk for severe disease. The main goal of this prospective multicenter study was to identify biomarkers that could predict ICU admission and in-hospital mortality.
View Article and Find Full Text PDF