Host innate immunity is one of the factors that determines the resistance of insects to their entomopathogens. In the research reported here we studied whether or not phenoloxidase (PO), a key enzyme in the melanogenesis component of humoral immunity of insects, plays a role in the protection of Lymantria dispar larvae from infection by L. dispar multiple nucleopolyhedrovirus.
View Article and Find Full Text PDFThe adaptation of pathogens to either their hosts or to environmental conditions is the focus of many current ecological studies. In this work we compared the ability of six spatially-distant Lymantria dispar (gypsy moth) multiple nucleopolyhedrovirus (LdMNPV) strains (three from eastern North America and three from central Asia) to induce acute infection in gypsy moth larvae. We also sequenced the complete genome of one Asian (LdMNPV-27/0) and one North American (LdMNPV-45/0) strain which were used for bioassay.
View Article and Find Full Text PDFIt was established that the virulence of the North American baculovirus strain LdMNPV-45 is almost two orders of magnitude higher than the virulence of the Asian strain LdMNPV-27 and does not depend on the test host population (gypsy moth). The Asian strain carries deletions in bro-p and vef-1 genes (82 and 91%, respectively). In accordance with the published data, the product of the latter can greatly increase the virulence of the virus.
View Article and Find Full Text PDFJ Invertebr Pathol
October 2013
Larval gypsy moths, Lymantria dispar (Lepidoptera:Lymantriidae) were co-infected with the L. dispar nucleopolyhedrovirus (LdMNPV) and the Cotesia melanoscela (Hymenoptera:Braconidae) polydnavirus (CmeBV). CmeBV was given along with a parasitoid egg and calyx products in a stinging event, or in the form of an injection of calyx-derived extract.
View Article and Find Full Text PDFNucleopolyhedroviruses (NPVs) can initiate devastating disease outbreaks in populations of defoliating Lepidoptera, a fact that has been exploited for the purposes of biological control of some pest insects. A key part of the horizontal transmission process of NPVs is the degradation of the larval integument by virus-coded proteins called chitinases, such as V-CHIA produced by the v-chiA genes. We used recombinant and naturally occurring strains of the Lymantria dispar NPV (LdMNPV) to test horizontal transmission in the field, release of virus from dead larvae under laboratory conditions, and cell lysis and virus release in cell culture.
View Article and Find Full Text PDF