Publications by authors named "J D Piguet"

Reversible dark state transitions in fluorophores represent a limiting factor in fluorescence-based ultrasensitive spectroscopy, are a necessary basis for fluorescence-based super-resolution imaging, but may also offer additional, largely orthogonal fluorescence-based readout parameters. In this work, we analyzed the blinking kinetics of Cyanine5 (Cy5) as a bar-coding feature distinguishing Cy5 from rhodamine fluorophores having largely overlapping emission spectra. First, fluorescence correlation spectroscopy (FCS) solution measurements on mixtures of free fluorophores and fluorophore-labeled small unilamellar vesicles (SUVs) showed that Cy5 could be readily distinguished from the rhodamines by its reversible, largely excitation-driven isomerization.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) fundamentally relies on local generation of PDT precursor states in added photosensitizers (PS), particularly triplet and photo-radical states. Monitoring these states in situ can provide important feedback but is difficult in practice. The states are strongly influenced by local oxygenation, pH and redox conditions, often varying significantly at PDT treatment sites.

View Article and Find Full Text PDF

Photo-induced dark transient states of fluorophores can pose a problem in fluorescence spectroscopy. However, their typically long lifetimes also make them highly environment sensitive, suggesting fluorophores with prominent dark-state formation yields to be used as microenvironmental sensors in bio-molecular spectroscopy and imaging. In this work, we analyzed the singlet-triplet transitions of fluorescein and three synthesized carboxy-fluorescein derivatives, with one, two or four bromines linked to the anthracence backbone.

View Article and Find Full Text PDF

Photoisomerization kinetics of the near-infrared (NIR) fluorophore Sulfo-Cyanine7 (SCy7) was studied by a combination of fluorescence correlation spectroscopy (FCS) and transient state (TRAST) excitation modulation spectroscopy. A photoisomerized state with redshifted emission was identified, with kinetics consistent with a three-state photoisomerization model. Combining TRAST excitation modulation with spectrofluorimetry (spectral-TRAST) further confirmed an excitation-induced redshift in the emission spectrum of SCy7.

View Article and Find Full Text PDF

Cyanine fluorophores are extensively used in fluorescence spectroscopy and imaging. Upon continuous excitation, especially at excitation conditions used in single-molecule and super-resolution experiments, photo-isomerized states of cyanines easily reach population probabilities of around 50%. Still, effects of photo-isomerization are largely ignored in such experiments.

View Article and Find Full Text PDF