Metal-organic frameworks have gained traction as leading materials for water sorption applications due to precise chemical tunability of their well-ordered pores. These applications include atmospheric water capture, heat pumps, desiccation, desalination, humidity control, and thermal batteries. However, the relationships between the framework pore structure and the measurable water sorption properties, namely critical relative humidity for condensation, maximal capacity, and pore size or temperature for the onset of hysteresis, have not been clearly delineated.
View Article and Find Full Text PDFTwo-dimensional conductive metal-organic frameworks (2D cMOFs) are an emerging class of crystalline van der Waals layered materials with tunable porosity and high electrical conductivity. They have been used in a variety of applications, such as energy storage and conversion, chemiresistive sensing, and quantum information. Although designing new conductive 2D cMOFs and studying their composition/structure-property relationships have attracted significant attention, there are still very few examples of 2D cMOFs that exhibit room-temperature electrical conductivity above 1 S cm, the value exhibited by activated carbon, a well-known porous and conductive material that serves in myriad applications.
View Article and Find Full Text PDFIn the presence of water, the electrically conductive metal-organic framework (MOF) CuHHTT (HHHTT = 2,3,7,8,12,13-hexahydroxy-4b1,5,10,15-tetraazanaphtho[1,2,3-gh]tetraphene) provides a conduit for proton transport, thereby becoming a dual ionic-electronic conductor. Owing to its dual conducting nature and its high density of imine and open metal sites, the MOF operates as a particularly sensitive chemiresistor, whose sensing mechanism changes with relative humidity. Thus, the interaction of NH gas with the MOF under low humidity promotes proton transport, which translates to high sensitivity for ammonia detection.
View Article and Find Full Text PDFCardiooncology
April 2024
Cardiovascular complications related to cancer therapies are broad and variable in onset. These complications are the leading cause of non-cancer related morbidity and mortality in childhood cancer survivors and can also impact ongoing cancer treatment. Despite this understanding, dedicated cardio-oncology programs are lacking in pediatric cardiology.
View Article and Find Full Text PDFEliminating the use of critical metals in cathode materials can accelerate global adoption of rechargeable lithium-ion batteries. Organic cathode materials, derived entirely from earth-abundant elements, are in principle ideal alternatives but have not yet challenged inorganic cathodes due to poor conductivity, low practical storage capacity, or poor cyclability. Here, we describe a layered organic electrode material whose high electrical conductivity, high storage capacity, and complete insolubility enable reversible intercalation of Li ions, allowing it to compete at the electrode level, in all relevant metrics, with inorganic-based lithium-ion battery cathodes.
View Article and Find Full Text PDF