Publications by authors named "J D Nardozzi"

Immune-activating cytokines such as interleukin-12 (IL-12) hold strong potential for cancer immunotherapy but have been limited by high systemic toxicities. We describe here an approach to safely harness cytokine biology for adoptive cell therapy through uniform and dose-controlled tethering onto the surface of the adoptively transferred cells. Tumor-specific T cells tethered with IL-12 showed superior antitumor efficacy across multiple cell therapy models compared to conventional systemic IL-12 coadministration.

View Article and Find Full Text PDF

Missense mutations in the multi-domain kinase LRRK2 cause late onset familial Parkinson's disease. They most commonly with classic proteinopathy in the form of Lewy bodies and Lewy neurites comprised of insoluble α-synuclein, but in rare cases can also manifest tauopathy. The normal function of LRRK2 has remained elusive, as have the cellular consequences of its mutation.

View Article and Find Full Text PDF

The proteins alpha-synuclein (αSyn) and leucine rich repeat kinase 2 (LRRK2) are both key players in the pathogenesis of the neurodegenerative disorder Parkinson's disease (PD), but establishing a functional link between the two proteins has proven elusive. Research studies for these two proteins have traditionally and justifiably focused in neuronal cells, but recent studies indicate that each protein could play a greater pathological role elsewhere. αSyn is expressed at high levels within neurons, but they also secrete the protein into the extracellular milieu, where it can have broad ranging effects in the nervous system and relevance to disease etiology.

View Article and Find Full Text PDF

Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder, affecting 1-3% of the population over 65. Mutations in the ubiquitin E3 ligase parkin are the most common cause of autosomal recessive PD. The parkin protein possesses potent cell-protective properties and has been mechanistically linked to both the regulation of apoptosis and the turnover of damaged mitochondria.

View Article and Find Full Text PDF

Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of familial and idiopathic Parkinson's disease. However, the mechanisms for activating its physiological function are not known, hindering identification of the biological role of endogenous LRRK2. The recent discovery that LRRK2 is highly expressed in cells of the innate immune system and genetic association is a risk factor for autoimmune disorders implies an important role for LRRK2 in pathology outside of the central nervous system.

View Article and Find Full Text PDF