Publications by authors named "J D Menietti"

The Juno Waves instrument measured plasma waves associated with Ganymede's magnetosphere during its flyby on 7 June, day 158, 2021. Three distinct regions were identified including a wake, and nightside and dayside regions in the magnetosphere distinguished by their electron densities and associated variability. The magnetosphere includes electron cyclotron harmonic emissions including a band at the upper hybrid frequency, as well as whistler-mode chorus and hiss.

View Article and Find Full Text PDF

A new radio component namely Saturn Anomalous Myriametric Radiation (SAM) is reported. A total of 193 SAM events have been identified by using all the Cassini Saturn orbital data. SAM emissions are L-O mode radio emission and occasionally accompanied by a first harmonic in R-X mode.

View Article and Find Full Text PDF

Plasmaspheric hiss waves at the Earth are well known for causing losses of electrons from the radiation belts through wave particle interactions. At Saturn, however, we show that the different plasma density environment leads to acceleration of the electrons rather than loss. The ratio of plasma frequency to electron gyrofrequency frequently falls below one creating conditions for hiss to accelerate electrons.

View Article and Find Full Text PDF

The reflection-by-sheath mechanism of 5 kHz narrowband emissions (NB) at Saturn is confirmed by Cassini observations during several crossings of the magnetopause, which show that the 5 kHz NB can be prevented from escaping Saturn's magnetosphere. The L-O mode 5 kHz NB remained visible in areas of low plasma density but disappeared in regions of high plasma density. In three cases, NB disappeared immediately after the crossings of Saturn's magnetopause.

View Article and Find Full Text PDF

Electron acceleration at Saturn due to whistler mode chorus waves has previously been assumed to be ineffective; new data closer to the planet show it can be very rapid (factor of 10 flux increase at 1 MeV in 10 days compared to factor of 2). A full survey of chorus waves at Saturn is combined with an improved plasma density model to show that where the plasma frequency falls below the gyrofrequency additional strong resonances are observed favoring electron acceleration. This results in strong chorus acceleration between approximately 2.

View Article and Find Full Text PDF