Biological nitrogen fixation provides fixed nitrogen for microbes living in the oligotrophic open ocean. UCYN-A2, the previously known symbiont of Braarudosphaera bigelowii, now believed to be an early-stage B. bigelowii organelle that exchanges fixed nitrogen for fixed carbon, is globally distributed.
View Article and Find Full Text PDFDecades of research on marine N2 fixation focused on Trichodesmium, which are generally free-living cyanobacteria, but in recent years the endosymbiotic cyanobacterium Candidatus Atelocyanobacterium thalassa (UCYN-A) has received increasing attention. However, few studies have shed light on the influence of the host versus the habitat on UCYN-A N2 fixation and overall metabolism. Here we compared transcriptomes from natural populations of UCYN-A from oligotrophic open-ocean versus nutrient-rich coastal waters, using a microarray that targets the full genomes of UCYN-A1 and UCYN-A2 and known genes for UCYN-A3.
View Article and Find Full Text PDFThe marine cyanobacterium can utilize glucose as a source of carbon. However, the relative importance of inorganic and organic carbon assimilation and the timing of glucose assimilation are still poorly understood in these numerically dominant cyanobacteria. Here, we investigated whole microbial community and group-specific primary production and glucose assimilation using incubations with radioisotopes combined with flow cytometry cell sorting.
View Article and Find Full Text PDFMarine phytoplankton are responsible for approximately half of photosynthesis on Earth. However, their ability to drive ocean productivity depends on critical nutrients, especially bioavailable nitrogen (N) which is scarce over vast areas of the ocean. Phytoplankton differ in their preferences for N substrates as well as uptake efficiencies and minimal N requirements relative to other critical nutrients, including iron (Fe) and phosphorus.
View Article and Find Full Text PDFMarine microbial communities are critical for biogeochemical cycles and the productivity of ocean ecosystems. Primary productivity in the surface ocean is constrained by nutrients which are supplied, in part, by mixing with deeper water. Little is known about the time scales, frequency, or impact of mixing on microbial communities.
View Article and Find Full Text PDF