Publications by authors named "J D Kursar"

Heart failure (HF) with mid-range or mildly reduced ejection fraction (HFmrEF) is a separate clinical entity in the HF spectrum, with a left ventricular ejection fraction ranging from 40 to 49%. While sodium glucose co-transporter 2 inhibitors have become the cornerstone therapy for the entire HF spectrum, there are a few clinical trials of HFmrEF. This prospective observational study was conducted at Dubrava University Hospital, Zagreb, Croatia, from May 2021 to October 2023.

View Article and Find Full Text PDF

Background: Notch signalling regulates stem cell development and survival and is deregulated in multiple malignancies. LY900009 is a small molecule inhibitor of Notch signalling via selective inhibition of the γ-secretase protein. We report the first-in-human phase I trial of LY900009.

View Article and Find Full Text PDF

In previous reports, [3H]5-HT has been used to characterize the pharmacology of the rat and human 5-HT2B receptors. 5-HT, the native agonist for the 5-HT2B receptor, has a limitation in its usefulness as a radioligand since it is difficult to study the agonist low-affinity state of a G protein-coupled receptor using an agonist radioligand. When using [3H]5-HT as a radioligand, rauwolscine was determined to have relatively high affinity for the human receptor (Ki human = 14.

View Article and Find Full Text PDF

Membrane-associated folate receptors (FRs) have been detected in many mammalian species, and multiple isoforms have been identified. The pharmacological properties of FRs from murine kidney, liver, and six murine tumors were characterized. Murine kidney expressed primarily folate-binding protein 1, analogous to human FR-alpha, whereas murine liver expressed predominantly folate-binding protein 2, analogous to human FR-beta.

View Article and Find Full Text PDF

The 5-Hydroxytryptamine2B (5-HT2B) receptor was cloned originally from rat stomach fundus and its pharmacology was determined to be consistent with that of the receptor responsible for contraction of rat fundal tissue in response to 5-HT. Recently, the cloning of the human homolog of the 5-HT2B receptor has been reported and, in this study, we report a detailed pharmacological characterization of this human receptor. The cloned human 5-HT2B receptor has high affinity for [3H]5-HT (Kd = 10.

View Article and Find Full Text PDF