Accompanying the occurrence of inflammatory reaction to release cytokines, pyroptosis can activate an immune response for resistance against cancer. Consequently, elevated levels of cytokines released by cancer cells are highly correlated with the effectiveness of cancer treatment. Herein, a noninvasive surface-enhanced Raman spectroscopy (SERS) immunosensor was developed to sensitively and specifically measure the tumor necrosis factor-α (TNF-α), a proinflammatory cytokine, during the cell pyroptosis process.
View Article and Find Full Text PDFBackground: Based on preclinical data showing addition of CDK4/6 inhibitors to gemcitabine was synergistic, ribociclib was evaluated in combination with gemcitabine to determine the maximum tolerated dose (MTD) and dose limiting toxicities (DLT).
Methods: In this single arm multicohort phase I trial, we evaluated the safety and efficacy of ribociclib plus gemcitabine in patients with advanced solid tumors. Patients received gemcitabine intravenously on days 1 and 8 followed by ribociclib days 8-14, with treatment repeated every 3 weeks.
Achieving the national climate target would depend on national actions. China has implemented important market mechanisms for a green and low-carbon energy transition, including the Renewable Portfolio Standard (RPS), the Tradable Green Certificate (TGC) market, the green power trading market, and so on. However, how to effectively integrate coupled TGC and green power trading to achieve a balance between maximizing economic benefits and environmental friendliness remains to be explored.
View Article and Find Full Text PDFBackground: Ginkgo biloba L., an iconic living fossil, challenges traditional views of evolutionary stasis. While nuclear genomic studies have revealed population structure across China, the evolutionary patterns reflected in maternally inherited plastomes remain unclear, particularly in the Sichuan Basin - a potential glacial refugium that may have played a crucial role in Ginkgo's persistence.
View Article and Find Full Text PDFNumerous studies have focused on the effect and mechanism of plastic degradation; due to their high persistence, petroleum-based plastics are difficult for microbes to mineralize. Although such plastics have been demonstrated to be mineralized by white rot fungus, the reactions at the molecular level remain unknown. Here, we show the whole mineralization model of polyethylene film, that can be summarized as follows: 1) white rot fungus colonizes on polyethylene film, using additives as dissimilated carbon sources; 2) the fungus secretes extracellular enzymes protein, combining with stearic acid as electron donor, causes oxidation and cracking of polyethylene film; and 3) partial dissociated sub-microplastic debris access to cells, further oxidizes in sequential actions of intracellular enzymes, and ultimately mineralize via β-oxidation.
View Article and Find Full Text PDF