The last decade has seen a rapid increase in studies utilising a genetically modified probiotic, Nissle 1917 (EcN), as a chassis for cancer treatment and detection. This approach relies on the ability of EcN to home to and selectively colonise tumours over normal tissue, a characteristic common to some bacteria that is thought to result from the low-oxygen, nutrient-rich and immune-privileged niche the tumour provides. Pre-clinical studies have used genetically modified EcN to deliver therapeutic payloads that show efficacy in reducing tumour burden as a result of high-tumour and low off-target colonisation.
View Article and Find Full Text PDFCellular longevity is regulated by both genetic and environmental factors. However, the interactions of these factors in the context of aging remain largely unclear. Here, we formulate a mathematical model for dynamic glucose modulation of a core gene circuit in yeast aging, which not only guided the design of pro-longevity interventions but also revealed the theoretical principles underlying these interventions.
View Article and Find Full Text PDFNatural microbial populations exploit phenotypic heterogeneity for survival and adaptation. However, in engineering biology, limiting the sources of variability is a major focus. Here we show that intentionally coupling distinct plasmids via shared replication mechanisms enables bacterial populations to adapt to their environment.
View Article and Find Full Text PDFDespite an overall decrease in occurrence, colorectal cancer (CRC) remains the third most common cause of cancer deaths in the USA. Detection of CRC is difficult in high-risk groups, including those with genetic predispositions, with disease traits, or from certain demographics. There is emerging interest in using engineered bacteria to identify early CRC development, monitor changes in the adenoma and CRC microenvironment, and prevent cancer progression.
View Article and Find Full Text PDFNat Rev Gastroenterol Hepatol
May 2024
Live microorganisms can be manipulated and engineered for colorectal cancer detection and treatment through methods such as faecal microbiota transplantation, native bacteria engineering and synthetic circuit engineering. Although promising, substantial effort is required to translate these approaches for clinical use.
View Article and Find Full Text PDF