Objective: Evidence of myelosuppression has been negatively correlated with patient outcomes following cases of high dose sulfur mustard (SM) exposure. These hematologic complications can negatively impact overall immune function and increase the risk of infection and life-threatening septicemia. Currently, there are no approved medical treatments for the myelosuppressive effects of SM exposure.
View Article and Find Full Text PDFRespiratory system damage is the primary cause of mortality in individuals who are exposed to vesicating agents including sulfur mustard (SM). Despite these devastating health complications, there are no fielded therapeutics that are specific for such injuries. Previous studies reported that SM inhalation depleted the tracheobronchial airway epithelial stem cell (TSC) pool and supported the hypothesis, TSC replacement will restore airway epithelial integrity and improve health outcomes for SM-exposed individuals.
View Article and Find Full Text PDFObjective: To develop a novel inhalation exposure system capable of delivering a controlled inhaled HD dose through an endotracheal tube to anesthetized rats to investigate the lung pathophysiology and evaluate potential medical countermeasures.
Materials And Methods: Target HD vapor exposures were generated by a temperature-controlled vapor generator, while concentration was monitored near real-time by gas chromatography. Animal breathing parameters were monitored real-time by in-line EMKA/SciReq pulmonary analysis system.
Chlorine is a toxic industrial chemical with a history of use as a chemical weapon. Chlorine is also produced, stored, and transported in bulk making it a high-priority pulmonary threat in the USA. Due to the high reactivity of chlorine, few biomarkers exist to identify exposure in clinical and environmental samples.
View Article and Find Full Text PDF