Socioeconomic status (SES) is associated with well-being outcomes across studies; however, there is wide variation in its measurement, particularly in adolescence. One key difference in measures of SES concerns whether participants relay objective information-for example, years of education, household income-or subjective perceptions of socioeconomic status, either with or without reference to others or society. Although parents are often considered the best source of SES information-especially objective SES-within families, interviewing parents within the context of adolescent research is costly, time-consuming, and not always feasible.
View Article and Find Full Text PDFWe sought to examine how resistance training (RT) status in young healthy individuals, either well resistance trained (T, n=10) or untrained (UT, n=11), affected molecular markers with leg immobilization followed by recovery RT. All participants underwent two weeks of left leg immobilization via a locking leg brace. Afterwards, all participants underwent eight weeks (3 d/week) of knee extensor focused progressive RT.
View Article and Find Full Text PDFWhile total RNA concentrations putatively represent ribosome content, there is a need to homologize various quantification approaches. Thus, total RNA concentrations ([RNA]) provided through UV-Vis spectroscopy (UV), fluorometry-only (Fluor), and fluorometry-based microfluidic chip electrophoresis (MFGE) were examined in C2C12 myotubes and mouse skeletal muscle to determine if values aligned with [18S + 28S rRNA] (i.e.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are small, noncoding RNAs that play a critical role in regulating gene expression post-transcriptionally. They are involved in various developmental and physiological processes, and their dysregulation is linked to various diseases. Skeletal muscle-specific miRNAs, including miR-1, play a crucial role in the development and maintenance of skeletal muscle.
View Article and Find Full Text PDFDuring embryogenesis, endothelial cells (ECs) are generally described to arise from a common pool of progenitors termed angioblasts, which diversify through iterative steps of differentiation to form functionally distinct subtypes of ECs. A key example is the formation of lymphatic ECs (LECs), which are thought to arise largely through transdifferentiation from venous endothelium. Opposing this model, here we show that the initial expansion of mammalian LECs is primarily driven by the in situ differentiation of mesenchymal progenitors and does not require transition through an intermediate venous state.
View Article and Find Full Text PDF