Publications by authors named "J D Declerck"

Background: Data quality is fundamental to maintaining the trust and reliability of health data for both primary and secondary purposes. However, before the secondary use of health data, it is essential to assess the quality at the source and to develop systematic methods for the assessment of important data quality dimensions.

Objective: This case study aims to offer a dual aim-to assess the data quality of height and weight measurements across 7 Belgian hospitals, focusing on the dimensions of completeness and consistency, and to outline the obstacles these hospitals face in sharing and improving data quality standards.

View Article and Find Full Text PDF

Background: Health care has not reached the full potential of the secondary use of health data because of-among other issues-concerns about the quality of the data being used. The shift toward digital health has led to an increase in the volume of health data. However, this increase in quantity has not been matched by a proportional improvement in the quality of health data.

View Article and Find Full Text PDF

Introduction: Deep Learning has been proposed as promising tool to classify malignant nodules. Our aim was to retrospectively validate our Lung Cancer Prediction Convolutional Neural Network (LCP-CNN), which was trained on US screening data, on an independent dataset of indeterminate nodules in an European multicentre trial, to rule out benign nodules maintaining a high lung cancer sensitivity.

Methods: The LCP-CNN has been trained to generate a malignancy score for each nodule using CT data from the U.

View Article and Find Full Text PDF

Objectives: To evaluate the performance of a novel convolutional neural network (CNN) for the classification of typical perifissural nodules (PFN).

Methods: Chest CT data from two centers in the UK and The Netherlands (1668 unique nodules, 1260 individuals) were collected. Pulmonary nodules were classified into subtypes, including "typical PFNs" on-site, and were reviewed by a central clinician.

View Article and Find Full Text PDF

Objectives: Harmonisation is the process whereby standardised uptake values from different scanners can be made comparable. This PET/CT pilot study aimed to evaluate the effectiveness of harmonisation of a modern scanner with image reconstruction incorporating resolution recovery (RR) with another vendor older scanner operated in two-dimensional (2D) mode, and for both against a European standard (EARL). The vendor-proprietary software EQ•PET was used, which achieves harmonisation with a Gaussian smoothing.

View Article and Find Full Text PDF