Publications by authors named "J D Barr"

G-quadruplexes (G4 s) are secondary, tetraplexed DNA structures abundant in non-coding regions of the genome, implicated in gene transcription processes and currently firmly recognised as important potential therapeutic targets. Given their affinity for human proteins, G4 structures are investigated as potential decoys and aptamers. However, G4 s tend to adopt different conformations depending on the exact environmental conditions, and often only one displays the specifically desired biological activity.

View Article and Find Full Text PDF

The Arenaviridae family of segmented RNA viruses contains nearly 70 species with several associated with fatal haemorrhagic fevers, including Lassa, Lujo and Junin viruses. Lymphocytic choriomeningitis arenavirus (LCMV) is associated with fatal neurologic disease in humans and additionally represents a tractable model for studying arenavirus biology. Within cultured cells, a high proportion of LCMV spread is between directly neighbouring cells, suggesting infectivity may pass through intercellular connections, bypassing the canonical extracellular route involving egress from the plasma membrane.

View Article and Find Full Text PDF

Crystal structure and morphology dictate the mechanical, thermal, and degradation properties of poly l-lactide (PLLA), the structural polymer of the first clinically approved bioresorbable vascular scaffolds (BVS). New experimental methods are developed to reveal the underlying mechanisms governing structure formation during the crimping step of the BVS manufacturing process. Our research specifically examines the "U-bends" - the region where the curvature is highest and stress is maximised during crimping, which can potentially lead to failure of the device with dramatic consequences on patient life.

View Article and Find Full Text PDF

A search for the exclusive hadronic decays W^{±}→π^{±}γ, W^{±}→K^{±}γ, and W^{±}→ρ^{±}γ is performed using up to 140  fb^{-1} of proton-proton collisions recorded with the ATLAS detector at a center-of-mass energy of sqrt[s]=13  TeV. If observed, these rare processes would provide a unique test bench for the quantum chromodynamics factorization formalism used to calculate cross sections at colliders. Additionally, at future colliders, these decays could offer a new way to measure the W boson mass through fully reconstructed decay products.

View Article and Find Full Text PDF
Article Synopsis
  • - The ATLAS experiment at the LHC conducted a search for long-lived particles (LLPs) using a large dataset (140 fb^{-1}) from proton-proton collisions at 13 TeV, focusing on LLPs with masses from 5 to 55 GeV that decay within the inner detector.
  • - The study considered scenarios where LLPs are produced from exotic Higgs boson decays and models involving axionlike particles (ALPs).
  • - No significant findings above expected background levels were detected, leading to the establishment of upper limits on various production rates involving the Higgs boson and the top quark related to LLPs and ALPs.
View Article and Find Full Text PDF