Publications by authors named "J Cuerquis"

Mesenchymal stem/stromal cells (MSCs) are emerging as a new therapy for diabetes. Here we investigate the properties of MSCs engineered to express Islet Neogenesis Associated Protein (INGAP) previously shown to reverse diabetes in animal models and evaluate their potential for anti-diabetic applications in mice. Mouse bone marrow-derived MSCs retrovirally transduced to co-express INGAP, Firefly Luciferase and EGFP (INGAP-MSCs), were characterized and implanted intraperitoneally (IP) into non-diabetic and diabetic C57BL/6 mice (Streptozotocin model) and tracked by live bioluminescence imaging (BLI).

View Article and Find Full Text PDF

Background Aims: Mesenchymal stromal cells (MSCs) suppress T-cell proliferation, especially after activation with inflammatory cytokines. We compared the dynamic action of unprimed and interferon (IFN)-γ plus tumor necrosis factor (TNF)-α-pretreated human bone marrow-derived MSCs on resting or activated T cells.

Methods: MSCs were co-cultured with allogeneic peripheral blood mononuclear cells (PBMCs) at high MSC-to-PBMC ratios in the absence or presence of concomitant CD3/CD28-induced T-cell activation.

View Article and Find Full Text PDF

Granulocyte-macrophage colony-stimulating factor (GMCSF) and MCP3 (aka CCL7) exert complementary, nonoverlapping, proimmune effects on responsive lymphoid and myeloid cells. We hypothesized that a synthetic cytokine linking GMCSF to MCP3 (hereafter GMME3) as part of a single polypeptide would acquire novel, therapeutically desirable immunomodulatory properties. We demonstrate that GMME3 has enhanced CC-chemokine receptor (CCR)-mediated intracellular Ca(++) mobilization with selective effects on the CD21(hi)CD24(hi) CD1.

View Article and Find Full Text PDF

We previously demonstrated that injection of IL-2-activated natural killer (NK) cells contribute to vascular remodeling via a4b7 integrin and killer cell lectin-like receptor (KLRG) 1 and promote cardiac repair following myocardial infarction (MI). The aim of the present study is to test the hypothesis that injection of recombinant human interleukin (rhIL)-2 improves angiogenesis and preserves heart function after MI. A single IV injection of rhIL-2 two days following MI improved by 27.

View Article and Find Full Text PDF

Endothelial progenitor cells (EPCs) consist of two different subpopulations named early (eEPCs) and late EPCs (lEPCs) that are derived from CD14(+) and CD14(-) circulating cells, respectively. These cells are regularly cultured over fibronectin-coated surfaces in endothelial basal medium (EBM)-2 supplemented with insulin-like growth factor (IGF-1), vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), and fibroblast growth factor (FGF). We have developed a new and simplified method for culturing human EPCs obtained from peripheral blood and tested their ability to preserve cardiac function following infarction.

View Article and Find Full Text PDF