Understanding the complex interplay between genetics and environmental factors is vital for enhancing livestock production efficiency while safeguarding animal health. Despite extensive studies on production-specific genes in livestock, exploring how epigenetic mechanisms and heritable modifications govern animal growth and development remains an under-explored frontier with potential implications across all life stages. This study focuses on the GBAF chromatin remodeling complex and evaluates its presence during embryonic and fetal development in swine.
View Article and Find Full Text PDFTrauma-induced Alzheimer's disease (AD) is rapidly emerging as a major consequence of traumatic brain injuries (TBI), with devastating social and economic impacts. Unfortunately, few treatment options are currently available due to a limited understanding of the underlying mechanisms. A clinically-relevant, experimental model that emulates scenarios with high levels of spatial and temporal resolution is critical for demystifying the pathways of post-TBI AD.
View Article and Find Full Text PDFContext: SWI/SNF chromatin remodelling complexes are composed of multiple protein subunits and can be categorised into three sub-families, including the BAF, PBAF, and GBAF complexes. We hypothesised that depletion of SMARCB1 and BRD7, two subunits unique to different SWI/SNF sub-families, would differentially impact porcine embryo development.
Aim: The aim of these experiments was to determine the developmental requirements of two SWI/SNF subunits, SMARCB1 and BRD7.
The role the mammary epithelial circadian clock plays in gland development and lactation is unknown. We hypothesized that mammary epithelial clocks function to regulate mammogenesis and lactogenesis, and propose the core clock transcription factor BMAL1:CLOCK regulates genes that control mammary epithelial development and milk synthesis. Our objective was to identify transcriptional targets of BMAL1 in undifferentiated (UNDIFF) and lactogen differentiated (DIFF) mammary epithelial cells (HC11) using ChIP-seq.
View Article and Find Full Text PDF