Animals optimize behavior by integrating sensory input with motor actions. We hypothe-sized that coupling thermosensory information with motor output enhances the brain's capacity to process temperature changes, leading to more precise and adaptive behaviors. To test this, we developed a virtual "thermal plaid" environment where zebrafish either actively controlled temperature changes (sensorimotor feedback) or passively experienced the same thermal fluctuations.
View Article and Find Full Text PDFBrains are not engineered solutions to a well-defined problem but arose through selective pressure acting on random variation. It is therefore unclear how well a model chosen by an experimenter can relate neural activity to experimental conditions. Here, we developed 'model identification of neural encoding (MINE).
View Article and Find Full Text PDFGliomas account for 26.5% of all primary central nervous system tumors. Recent studies have used diffusion tensor imaging (DTI) to extract white matter fibers and the diffusion coefficients derived from MR processing to provide useful, non-invasive insights into the extent of tumor invasion, axonal integrity, and gross differentiation of glioma from metastasis.
View Article and Find Full Text PDFHistopathological verification is currently required to differentiate tumor recurrence from treatment effects related to adjuvant therapy in patients with glioma. To bypass the complications associated with collecting neural tissue samples, non-invasive classification methods are needed to alleviate the burden on patients while providing vital information to clinicians. However, uncertainty remains as to which tissue features on magnetic resonance imaging (MRI) are useful.
View Article and Find Full Text PDF